Using Low Cost of Ownership Direct Bonding Technologies For MEMS Applications

Sitaram Arkalgud
VP – 3D Applications, Invensas Corporation
Outline

• Background: ZiBond and DBI

• Key MEMS Requirements

• ZiBond and DBI Attributes

• Summary
Background: ZiBond® & DBI®
Corporate Overview

Incorporated: 1990
Headquarters: San Jose, California
Nasdaq listed: TSRA
Shares Outstanding: ~52 Million
Employees: ~270 (~210 Engineers)
2015 Revenue: $273 Million
2015 Net Income: $117 Million

Mission: Invent, develop, and commercialize electronic interconnect, imaging, and learning technologies to enable efficient, intelligent devices everywhere.
Over 25 Years of Leadership in Innovation & Technology Licensing

Parent Company: Founded in 1990, manages licensing for Tessera’s subsidiaries.

Develops novel semiconductor packaging & interconnect solutions for memory, mobile, computing, and smart object applications.

Develops software and hardware-accelerated computational imaging, computer vision and biometrics solutions for multiple applications.

Develops novel semiconductor packaging & interconnect solutions for memory, mobile, computing, and smart object applications.

Acquired in August 2015
ZiBond® and DBI® Process: Leverages Existing Infrastructure

ZiBond®

- Homogenous Bonding
 - Dielectric - Dielectric
 - Example: SiO₂ - SiO₂

DBI®

- Hybrid Bonding
 - Oxide to Oxide with Interconnect
 - Example: Cu/SiO₂ - Cu/SiO₂

Courtesy Chipworks

SEM cross-section of stacked dies
- 13-Mpixel CMOS Image Sensor
- 90-nm back-illuminated sensor bonded face-to-face with 65-nm image processor
- "up & over" TSVs filled with Cu & appear to be filled simultaneously

Chipworks Confidential

All content © 2013, Chipworks Inc. All rights reserved.
ZiBond Bond Energy

Low Distortion Dielectric Bonding
Very High Bond Energy at Very Low Temperature

Fracture Strength of Silicon

Minimum bond energy for post bond fabrication
DBI® Hybrid Bonding Uniqueness

Electrical Interconnections at Low Temperature without External Pressure Minimizes Stress and Cost of Ownership

Cross-Section after Pick/Place (example)

- SILICON
- CMOS Back End of Line
- Oxide
- METAL
- Oxide
- CMOS Back End of Line

Heating Closes Recess (~ 1 nm / 50ºC)

- SILICON
- CMOS Back End of Line
- Oxide
- METAL
- METAL
- Oxide
- CMOS Back End of Line

Further Heating Compresses Metal w/out External Pressure

- SILICON
- CMOS Back End of Line
- Oxide
- METAL
- Oxide
- CMOS Back End of Line

Spontaneous Chemical Reaction with By products Diffusing Away from Bond Interface
ZiBond® and DBI® Have Widespread Applicability

ZiBond® and/or DBI Licensees*:
Sony, Silanna Semiconductor (acq. by Qualcomm), Raytheon, Novati, Fraunhofer, Tezzaron, Sandia and MIT LL
Key MEMS Requirements
Example MEMS Process Flow*

- „Typical“ flow requires two bond steps
- Variety of bond options
 - Si Fusion
 - Anodic
 - Transient Liquid Phase
 - Eutectic
 - Metal thermocompression
 - Others ...

* Adapted from “Applying the CMOS Test Flow to MEMS Manufacturing” Mike Daneman, InvenSense, Inc. (http://www.meptec.org/Resources/2%20-%20InvenSense.pdf)
<table>
<thead>
<tr>
<th></th>
<th>Anodic</th>
<th>Glass Frit</th>
<th>TLP</th>
<th>Eutectic</th>
<th>Metal TCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonding Temp. (°C)</td>
<td>350 - 450</td>
<td>350 - 450</td>
<td>180 - 300</td>
<td>300 - 450</td>
<td>100 - 400</td>
</tr>
<tr>
<td>Post Anneal (°C)</td>
<td>NA</td>
<td>Same as bonding</td>
<td>Higher than bonding</td>
<td>Same as bonding</td>
<td>NA</td>
</tr>
<tr>
<td>Bond Cycle Time (min)</td>
<td>5 – 20</td>
<td>20 – 30</td>
<td>30 – 50</td>
<td>30 – 50</td>
<td>15 – 90</td>
</tr>
<tr>
<td>Line Width (µm)</td>
<td>>20</td>
<td>200 – 500</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
</tr>
<tr>
<td>Topography Toler. (µm)</td>
<td>0</td>
<td>1 – 1.5</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Leak Rate</td>
<td>Low</td>
<td>Low</td>
<td>Very Low</td>
<td>Very low</td>
<td>Low</td>
</tr>
<tr>
<td>Other</td>
<td>High Voltage</td>
<td></td>
<td></td>
<td></td>
<td>Pressure</td>
</tr>
</tbody>
</table>

*Adapted from EVG’s presentation at MEMS Tech XPOT Semicon West 2015
ZiBond and DBI Attributes
High Throughput: DBI® Wafer to Wafer Bonding

Wafer Alignment in Ambient with Pick/Place Tool

Cross-Section of Wafers Bonding

Wafer to wafer video here
High Throughput: DBI Die to Wafer

Die to Wafer Bonding would be used in MEMS applications where top and bottom die sizes may not match.
Comparing Permeability of Water Vapor in Materials

- Glass seals vary considerably in permeability
 - 10 um seal width does not provide adequate sealing
 - 100 um may suffice, depending on glass properties
- Metal seals demonstrate orders of magnitude better performance than glass
- Depending on applications, either ZiBond or DBI could be used

Hermetic Sealing With ZiBond

- Die Size: 8x8 mm²
- Cavity: 7x7 mm² x 0.1 mm
- Bond ring: 0.5 mm
- MIL STD 883E

Helium partial pressure vs post-helium pressure time for ZiBond bonded silicon cavity to silicon wafer

Expect even better hermetic sealing from DBI (comparable to other metal bond technologies)
ZiBond in MEMS

Photograph of a MEMS cavity wafer encapsulated with ZiBond to a glass wafer for a micromirror application. Inset of a singulated die shows the ZiBond surface.
Comparing Bond Technologies

<table>
<thead>
<tr>
<th></th>
<th>Anodic</th>
<th>Glass Frit</th>
<th>TLP</th>
<th>Eutectic</th>
<th>Metal TCB</th>
<th>ZiBond</th>
<th>DBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonding Temp. (°C)</td>
<td>350 - 450</td>
<td>350 - 450</td>
<td>180 - 300</td>
<td>300 - 450</td>
<td>100 - 400</td>
<td>Room</td>
<td>Room</td>
</tr>
<tr>
<td>Post Anneal (°C)</td>
<td>NA</td>
<td>Same as bonding</td>
<td>Higher than bonding</td>
<td>Same as bonding</td>
<td>NA</td>
<td>75 – 300 Post anneal</td>
<td>150 – 300 Post anneal</td>
</tr>
<tr>
<td>Bond Cycle Time (min)</td>
<td>5 – 20</td>
<td>20 – 30</td>
<td>30 – 50</td>
<td>30 – 50</td>
<td>15 - 90</td>
<td>< 5*</td>
<td>< 5*</td>
</tr>
<tr>
<td>Line Width (µm)</td>
<td>>20</td>
<td>200 – 500</td>
<td>>30</td>
<td>>30</td>
<td>>30</td>
<td>> 20**</td>
<td>> 20**</td>
</tr>
<tr>
<td>Topography Toler. (µm)</td>
<td>0</td>
<td>1 – 1.5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Leak Rate</td>
<td>Low</td>
<td>Low</td>
<td>Very Low</td>
<td>Very low</td>
<td>Low</td>
<td>Low</td>
<td>Very Low***</td>
</tr>
<tr>
<td>Other</td>
<td>High Voltage</td>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Ref: Ziptronix internal data; BEOL development facility (Morrisville, NC)
** Preliminary analysis shows equal to/better than Anodic bonding
*** Ref: Slide 15, equivalent or better than similar metal bonding
Summary
Applying ZiBond and DBI to MEMS

- **Wafer / Die Bonding is a Key Technology Enabler** - 2.5D/3D IC, Image Sensors, MEMS / Other Sensors, DRAM, RF ...

- **ZiBond® and DBI®**: Cost effective, low temperature wafer to wafer and die to wafer bonding platforms for wide range of applications
 - In high volume production - Multiple generations of leading smartphones and other consumer electronics
 - RF: Enables reliable bonding and lowers cost for filters and switches
 - Image Sensor: Industry leading backlight illuminated (BSI) image sensor with up to pixel-level interconnect capability
 - DRAM: Thinnest and lowest cost 3D DRAM
 - 2.5D/3D IC: Eliminates microbumps, underfills and improves performance

- **ZiBond® and DBI® for MEMS:**
 - Alleviates temperature, cycle time, pressure or high voltage concerns with current bonding solutions
 - Enables lower cost and reliable MEMS devices